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We introduce a new class of partially coherent asymmetric array beams. When the beam propagates, the spectral density of
each lobe and the corresponding degree of coherence have rotating behavior. Especially, not only can array-like lattices
revolve arbitrarily, but also they canmove freely by controlling transverse plane shifts. Furthermore, we have generated this
kind of beam experimentally, and the experimental phenomena are consistent with the numerical simulation results. Such a
rotating beam with free movement and revolution may broaden the way for optical applications. More importantly, it
inspires further studies in the field of asymmetric coherence gratings and lattices.

Keywords: partial coherence; asymmetric array beams; rotating behavior; transverse plane shifts; free movement and
revolution.
DOI: 10.3788/COL202220.022602

1. Introduction

In the space-frequency formulation of the coherence theory of
stationary optical fields, the cross-spectral density (CSD) func-
tion superimposed by the coherent propagation mode has
attracted wide attention. To gain some insight about properties
of fields radiated by sources of different states of coherence, the
Gaussian Schell model (GSM) source is widely used, which can
bring simpler analysis results for the non-trivial incident field
and media of the beam interaction[1]. Recent years have wit-
nessed significant progress in the characteristics of the beams,
for instance, flap-top beams[2], twisted array beams[3], and hol-
low beams[4]. At the same time, there are continuous break-
throughs in experiments and simulations[5,6].
In order to design a novel beam field, the conditions of the

amplitude and phase of the complex coherence in one and
two dimensions are derived theoretically[7,8]. Further analysis
shows the special effects of the Cartesian phase on the lateral
shifting of the light source[9]. The Cartesian counterpart can
realize the separation in the x and y coordinates[10]. A specific
weighting factor is assigned to the linear phase and it is then lin-
early superimposed. In this way, a periodic structure of source
degree of coherence (DOC) can be realized, thereby forming a
grating-like and lattice-like radiation pattern[11]. This has been
verified analytically and experimentally when generating an
asymmetric lattice[12]. It should also be mentioned that there
is already a combination of vortex phase and linear Cartesian
phase, and there is no superposition of rotational phase and
Cartesian phase. Compared with the former, the latter will have

lobe rotation and overall revolution. In addition, it is well known
that the initial introduction of the twisted phase is due to the
study of the rotationally invariant CSD function[13]. Twisted
GSMs are due to the presence of this type of phase term in
the GSM source. Distorted partially coherent beams have also
made some important conceptual developments in recent
years[14–17]. In order to achieve larger degrees of freedom and
flexibility in the beam twist, several types of typical partially
coherent beams have been introduced recently[18,19]. The sign
of the propagation process is that the spectral density and coher-
ence tend to rotate. Then, by combining the spatial light modu-
lator (SLM) with the astigmatic phase, this type of rotating beam
was also obtained experimentally[6].
Here, we show a type of random source whose CSD combines

the lobe rotation, the beam revolution, and linear shifts of the
array. We establish such a beam and then explore its process
of propagation as a controllable two-dimensional optical array
that carries rotating and revolving structures. It is noteworthy
that, while the rotating phase is capable of producing rotating
beams upon propagation, the linear Cartesian phase is respon-
sible for splitting beams, obtaining a series of replicas and then
forming the asymmetric array according to the shifting of differ-
ent weights.

2. Theory

Let us first review the main theoretical descriptions related to
stationary beams. Suppose that a scalar random beam-like field

Vol. 20, No. 2 | February 2022

© 2022 Chinese Optics Letters 022602-1 Chinese Optics Letters 20(2), 022602 (2022)

mailto:zhaodaomu@yahoo.com
https://doi.org/10.3788/COL202220.022602


is generated from a planar source located in the plane of z = 0
and then propagated in the direction of positive z. In optical
coherence theory[20], the second-order statistic of the field is
expressed as the CSD function of two points r1 and r2 in the
source plane:

W�0��r1,r2;ω� = hU��r1;ω�U�r2;ω�i, (1)

where U represents the fluctuating field in the source plane, and
angle brackets represent the average value of the whole. The
asterisk signifies the complex conjugate. For the sake of brevity,
the angular frequency dependence of all of the quantities of
interest will be omitted but implied in the following. To be a
genuine correlation function inmathematics, the CSDmust cor-
respond to a non-negative definite kernel. The kernel is satisfied
if the CSD function can be written as the superposition integral
of the following form[1]:

W�0��r1,r2� =
Z

p�v�H�
0 �r1,v�H0�r2,v�d2v, (2)

where p�v� is an arbitrary non-negation weight function for any
v, and H0�r,v� is an arbitrary or even possibly complex-valued
kernel.
We will first illustrate how the rotating array spectral density

can be obtained directly. An anisotropic Gaussian correlated
field with linear shifting parameters as is required

[11],

p�vx,vy� =
4πδxδy
CxCy

XNx

nx=1

XNy

ny=1

fexp�−δ2x�2πvx � ax�2�

× exp�−δ2y�2πvy � ay�2�g, (3)

where δs �s = x, y� are positive real constants whose values are
related to the spatial coherence widths along the x and y direc-

tions. Cs =
PNs

ns=1 are the normalization factor. as = ηsNs and ηs
are any real numbers. Then, ηs and Ns can determine the coher-
ence state of the source and the spectral density of the far field.
H0 uses the following form to generate a light source with a

partially coherent beam with the characteristics of revolution
and rotation:

H0�r,v� = τ�r� exp�−2πivx�x cos α − y sin α��
× exp�−2πivy�x sin α� y cos α��
× exp�iu�x cos θ − y sin θ��x sin θ� y cos θ��, (4)

where u is the beam twist parameter, which is the real constant.
The arbitrary angles α and θ characterize the revolution
of the overall structure around the beam axis and the rotation
of phase structure around every lobe axis, respectively, which

are performed by rotation matrices
� cos α − sin α
sin α cos α

�
and� cos θ − sin θ

sin θ cos θ

�
. The amplitude profile function τ�r� here

takes the form of an anisotropic Gaussian profile:

τ�r� = exp

�
−

x2

4σ2x

�
exp

�
−

y2

4σ2y

�
, (5)

where σx and σy are the spectral density widths along the x
and y directions in the source plane, respectively. On
substituting Eqs. (4) and (3) into Eq. (2), the CSD function is
expressed as

W�0��r1,r2� =
1

CxCy

XNx

nx

XNy

ny=1

�
exp

�
−
x21 � x22
4σ2x

−
y21 � y22
4σ2y

�

× exp

��
sin 2α
4δ2x

−
sin 2α
4δ2y

�
�x2 − x1��y2 − y1�

�

× exp

�
−
�
cos2α
4δ2x

� sin2α
4δ2y

�
�x2 − x1�2

�

× exp

�
−
�
sin2α
4δ2x

� cos2α
4δ2y

�
�y2 − y1�2

�

× exp�i�ax cos α� ay sin α��x2 − x1�
� i�ay cos α − ax sin α��y2 − y1�

� iu sin 2θ
2

�x22 − x21 � y21 − y22�

� iu cos 2θ
2

�x2y2 − x1y1��
	
: (6)

According to the generalized Huygens–Fresnel principle, the
CSD that is propagated by the optical ABCD system in the trans-
verse plane z > 0 is characterized by[21,22]

W�ρ1,ρ2,z� =
k2

4B2CxCy





















1

axsaysT1ε

s
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XNx
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XNy

ny=1

�
exp

�
−
ikD
2B

�ρ21 − ρ22�
�

× exp

�
−k2�ρ1x − ρ2x�2
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where
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axs =
1
2σ2x

; ays =
1
2σ2y

; γ = u cos 2θ;

β1 =
kA
B

� u sin 2θ; β2 =
kA
B

− u sin 2θ;

anx = ax cos α� ay sin α; any = −ax sin α� ay cos α;

T1 =
cos2α
4δ2x

� sin2α
4δ2y

� 1
8σ2x

� β21
4axs

� γ2

4ays
;

T2 =
sin2α
4δ2x

� cos2α
4δ2y

� 1
8σ2y

� β22
4ays

� γ2

4axs
;

G = −
�
β1
axs

� β2
ays

�
γ

2
�

�
1
4δ2x

−
1
4δ2y

�
sin 2α;

ε = T2 −
G2

4T1
;

Ω1 =
kβ1�ρ2x − ρ1x�

2axsB
� kγ�ρ2y − ρ1y�

2aysB
;

Ω2 =
kγ�ρ2x − ρ1x�

2axsB
� kβ2�ρ2y − ρ1y�

2aysB
;

Λx = anx −
k�ρ1x � ρ2x�

2B
; Λy = any −

k�ρ1y � ρ2y�
2B

: (8)

Here, k = 2π=λ denotes the wavenumber, and λ is the optical
wavelength in free space. ρ = �ρx,ρy� is the position vector in the

output plane. Now, set the same position coordinate in the CSD
formula to obtain the spectral density during propagation,
S�ρ,z� =W�ρ,ρ,z�, and the DOC of two symmetric points
with respect to the optical axis, μ�ρ, − ρ� =W�ρ, − ρ�=
�S�ρ�S�−ρ��1=2.
Next, in order to better study the morphological characteris-

tics of the beam in the propagation process, we consider adding a
lens system, whose transfer matrix can be given by the following
formula:

�
A B
C D

�
=
�
1 z
0 1

��
1 0
− 1

f 1

�
=
�
1 − z

f z

− 1
f 1

�
, (9)

where f = 300mm is the focal length of the thin lens, and z is the
distance between the input plane and the output plane. Since the
beam without a lens phase travels at an infinite distance, after
adding it, the process of changing the spectral density distribu-
tion of the asymmetric rotating GSM array (ARGSMA) beam
can be observed within the equivalent focal length.
The propagation characteristics of an ARGSMA beam are

depicted in Figs. 1(a)–1(d). Figure 1(a) represents the spectral
density of a row of light beams along the propagation direction.
Figure 1(b) is the DOC corresponding to Fig. 1(a). The rotation
of spectral density is slow first, then fast, and then slow, as seen

Fig. 1. Propagation dynamics of the beams with (a) spectral density and (b) DOC. Calculated parameters are set as follows: μ= 15 mm−2; ηx= ηy= 60; Nx= Ny= 2;
σx = δx = 1 mm; σy = δy = 0.3 mm; α = π/8; θ = 2π/3. Rotation angles versus propagation distance z with u = 3, 15, 30, and 60 mm−2 for (c) spectral density and
(d) DOC.
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in Fig. 1(c). In order to perfectly represent the shape of each stage
of rotation, non-equal spacing is used here to select iconic dia-
grams. Specifically, five specific positions are given in Figs. 1(a)
and 1(b), which are z = 0, 160, 190, 230, and 300 mm. The initial
Gaussian ellipse progressively splits into a rotating 2 × 2
Gaussian array upon propagation, which moves along the line
at an angle α = π=8 to the diagonal shown, as in Fig. 1(a).
Each individual lobe of spectral density rotates clockwise all
the way around its own central axis in a synchronous motion.
The line μ = 15mm−2 in Fig. 1(c) also explains the correspond-
ing entire rotation process of spectral density from z = 0mm to
300mm. In the beginning, although the beam can undergo lower
speed of a smaller twist, it can speed up and complete a larger

and even a twist of 150 deg. The larger the μ is, the earlier
the acceleration starts in Figs. 1(c). Furthermore, Fig. 1(b)
presents DOC of the field. It is demonstrated that when the
beam propagates, the DOC rotates clockwise around the beam
axis and then degenerates into a Gaussian profile. The μ of dif-
ferent values corresponds to DOC, as shown in Fig. 1(d). In this
respect, the rotating array beam can be a potential tool for
dynamic control of multiple particles.
Having shown the intriguing property of beams, it is instruc-

tive to study the dependency of the light intensity distributions.
As clearly seen from Fig. 1(a), the central axis of this beam is not
simply along the z axis during propagation, but with the lateral
shift. The parameter ηs determines the amount and direction of
the lateral shift, as shown in Fig. 2. Particularly, asymmetric
characteristics about the x axis and the y axis depend on negative
and positive numbers. It means that when ηx = ηy = 60, the
array beam will be moved to the upper right direction. On
the contrary, when ηx = ηy = −60, the array beam will be moved
to the bottom left direction. In the sameway, when ηx = −60 and
ηy = 60, the array beamwill be moved to the upper left direction.
On the contrary, when ηx = 60 and ηy = −60, the array beamwill
be moved to the bottom left direction. The intensity remains
symmetric about both axes when ηx = ηy = 0. Meanwhile, it is
also possible to achieve only one axial symmetry by changing
its number. To develop an understanding of the transverse plane
shifts, the specific splitting process of Figs. 2(e) to 2(i) is given
above. As the value of jηsj gradually increases, the beam gradu-
ally splits and spreads in a certain direction. What is more, it is
also noticeable that the value of the parameterNs determines the
dimension of the array.
As shown in Fig. 3, it is worth mentioning that the revolution

of the array beam and rotation of each lobe is controlled by α and
θ, respectively. To be specific, Fig. 3(a) shows that the array
beam revolves around the fixed center of the figure and com-
pletes a circle, as α increases from 0 to 2π. Figure 3(b) shows
the size of θ will affect the rotation direction of each lobe.
π=4 and 3π=4 are the special points. At these two points, the lobe

Fig. 2. Free movement of spectral densities with different values of ηs.
Calculated parameters are set as follows: μ = 15 mm−2; z = 190 mm;
Nx = 4; Ny = 3; σx = δx = 1 mm; σy = δy = 0.3 mm; α = 0; θ = 2π/3.

Fig. 3. (a) Revolution angles of the array beam with different values of α. Calculated parameters are set as follows: μ = 15 mm−2; z = 190 mm; ηx = ηy = 60;
Nx = Ny = 3; σx = δx = 1 mm; σy = δy = 0.3 mm; θ = 2π/3. (b) Rotation angles of the lobes during transmission with θ = 0, π/8, π/4, π/3, and 2π/3. (c) The
relationship between the rotation angles of the lobes and θ at z = f.
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does not rotate. From π=4 to 3π=4, it rotates clockwise. During 0
to π=4 and 3π=4 to π, the rotation is counterclockwise. Then, it
takes π as the cycle to repeat itself ad infinitum. There are five
special values given in Fig. 3(b), in which θ = 2π=3 is in perfect
agreement with the transmission process in Fig. 1. Also, the cor-
responding points of the special values in Fig. 3(b) have been
clearly marked in the periodic graph in Fig. 3(c) in order to illus-
trate the generality of the conclusion.

3. Experiment

The sketch of the experimental setup is shown in Fig. 4. The
Gaussian beam is emitted by a 532 nm linearly polarized semi-
conductor laser, and it then passes through a polarizing beam
splitter (PBS) to control the power of the beam. In order to

achieve the amplitude of the modulated beam, SLM1 must be
distributed with a prescribed intensity. So by combining two lin-
ear polarizers (LP1 and LP2), the polarization direction of the
beam after passing through the beam expander and facing
SLM1 (LC2012) is easily controlled. For the purpose of filtering
out stray lights, a 4f system (L1 and L2) with an iris is estab-
lished. After the laser beam passes through the rotating
ground-glass disk (RGGD), the GSM correlation is gener-
ated[23,24]. At the same time, other orders of light beams can
be physically blocked by the iris. Then, the light beam passes
through the lens after passing through the lens of focal length
f . A Gaussian amplitude filter (GAF) is added after the lens
to standardize the initial anisotropic Gaussian intensity distribu-
tion. It is also easy to know that the Fourier transform of the light
intensity distribution on RGGD is equivalent to the coherent
distribution formed after GAF. The next SLM2 (PLUTO,
Phase Only) is loaded with the phase. After being reflected by
SLM2 and going through the 4f system (L4 and L5) with an iris,
the anisotropic GSM beam loaded with phase hologram proper-
ties is formed in the first-order diffraction. Finally, the
ARGSMA beam is generated by Fourier transform with lens
(L6), and then the image is detected by the charge-coupled
device (CCD) to measure the intensity of the beam. Then,
one can find in Refs. [6,25] the use of a large number of light
intensity photos collected to obtain the detailed information
of the DOC.
The experimental parameters are consistent with the simula-

tion values, which is easy to facilitate research, comparison, and
verification. It can be seen that the results of the experiment
shown in Fig. 5 are in good agreement with the numerical sim-
ulations shown earlier. First of all, it can be seen from the first set
of experimental graphs that the transmission behavior of the
spectral density of ARGSMA and DOC is in perfect agreement
with Fig. 1. Specifically, the process of lobes splitting, the revo-
lution direction of the array controlled by α, the rotation behav-
ior of the lobe controlled by θ, and the final rotation angle
reached are in good agreement with Fig. 1(a). Similarly, the
deflection direction and angle of the DOC correspond well to

Fig. 4. Experimental setup for generating an ARGSMA beam. LP, linear polarizer; PBS, polarizing beam splitter; BE, beam expander; SLM, spatial light modulator; L,
lens; RGGD, rotating ground-glass disk; GAF, Gaussian amplitude filter; CCD, charge-coupled device; PC, personal computer.

Fig. 5. (a1) Spectral density and (a2) DOC of the ARGSMA beam during trans-
mission from the experiment and the parameters as in Fig. 1. (b1)–
(b4) Experimental results of free movement with |ηs| increasing and the
parameters as in Fig. 2.
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Fig. 1(b). Subsequently, in order to give a better understanding
of the dispersion mechanism of the array, the experimental dia-
gram in Figs. 5(b1)–5(b4) verifies the process of the theoretical
simulation of Figs. 2(e) to 2(i) changing with increasing η and
clearly verifies the relationship of the linear shift parameter η
with different values, which are positive or negative, and the
lobes, which change in position and distance.

4. Conclusions

In summary, we have modeled a new family of random sources
described by a revolving CSD being a linear combination of the
CSDs with rotation that radiates far fields with array-like spec-
tral densities and non-trivial distributions. Analysis shows that
this type of beam can control source parameters to arbitrarily
tailor revolution of the array beam and rotation of each lobe,
gaining larger freedom in the field of rotary engineering.
Furthermore, we demonstrated how the far-field spectra, and
also found that the dimensions of the arrays, can be easily
adjusted by changing the summing index in the function. By
combining the construction of a partially coherent beam and
the SLM loading phase, this type of ARGSMA beam is produced
experimentally. Consistent with expectations, the experimental
phenomena and numerical simulations basically fit. We foresee
a broad range of applications for this new class of rotating beams
from optical trapping and conveying, where the beam rotates
and plays significant roles. More importantly, we hope that
the results obtained here can realize the broadening of the field
of asymmetric coherent gratings and lattices and have further
enlightening research.
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